हिंदी

Write a Vector Normal to the Plane → R = L → B + M → C . - Mathematics

Advertisements
Advertisements

प्रश्न

Write a vector normal to the plane  \[\vec{r} = l \vec{b} + m \vec{c} .\]

 

उत्तर

\[\text{ The equation of the given plane is } \]

\[ \vec{r} = l \vec{b} + m \vec{c} \]

\[\text{ So, the plane passes parallel to the vectors } \vec{b} \text{ and } \vec{c} .\]

\[\text{ So, the vector normal to the plane is }  \vec{b} \times \vec{c} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Very Short Answers [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Very Short Answers | Q 12 | पृष्ठ ८३

संबंधित प्रश्न

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.


Find the coordinates of the point where the line through (3, ­−4, −5) and (2, − 3, 1) crosses the plane 2x + z = 7).


The planes: 2− y + 4z = 5 and 5x − 2.5y + 10z = 6 are

(A) Perpendicular

(B) Parallel

(C) intersect y-axis

(C) passes through `(0,0,5/4)`


Find the coordinates of the point where the line through the points (3, - 4, - 5) and (2, - 3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2,- 3) and (0, 4, 3)


If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.

 

Find the intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 and also find the direction cosines of the normal to the plane.


Reduce the equation \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right) + 6 = 0\] to normal form and, hence, find the length of the perpendicular from the origin to the plane.

 


Write the normal form of the equation of the plane 2x − 3y + 6z + 14 = 0.

 

The direction ratios of the perpendicular from the origin to a plane are 12, −3, 4 and the length of the perpendicular is 5. Find the equation of the plane. 


Find a unit normal vector to the plane x + 2y + 3z − 6 = 0.

 

Find the equation of a plane which is at a distance of \[3\sqrt{3}\]  units from the origin and the normal to which is equally inclined to the coordinate axes.

 

Find the distance of the plane 2x − 3y + 4z − 6 = 0 from the origin.

 

Find the equation of the plane which contains the line of intersection of the planes \[x + 2y + 3z - 4 = 0 \text { and } 2x + y - z + 5 = 0\] and whose x-intercept is twice its z-intercept.


Find the value of λ such that the line \[\frac{x - 2}{6} = \frac{y - 1}{\lambda} = \frac{z + 5}{- 4}\]  is perpendicular to the plane 3x − y − 2z = 7.

 
 

Write the value of k for which the line \[\frac{x - 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{k}\]  is perpendicular to the normal to the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right) = 4 .\]


Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 2 \hat{k}  \right) = 5 .\]

 

Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .


The equation of the plane containing the two lines

\[\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z - 0}{3} \text{ and }\frac{x}{- 2} = \frac{y - 2}{- 3} = \frac{z + 1}{- 1}\]
 
 

Find the image of the point having position vector `hat"i" + 3hat"j" + 4hat"k"` in the plane `hat"r" * (2hat"i" - hat"j" + hat"k") + 3` = 0.


The equations of x-axis in space are ______.


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hat"i" + 2/sqrt(14)hat"j" + 3/sqrt(14)hat"k"`.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×