मराठी

Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.

बेरीज

उत्तर

Equation of the plane passing through two points (x1, y1, z1) and (x2, y2, z2) with its normal’s d’ratios is

a(x – x1) + b(y – y1) + c(z – z1) = 0  ......(i)

If the plane is passing through the given points (2, 1, – 1) and (– 1, 3, 4)

Then a(x2 – x1) + b(y2 – y1) + c(z2 – z1) = 0

⇒ a(– 1 – 2) + b(3 – 1) + c(4 + 1) =

⇒ – 3a + 2b + 5c = 0  ......(ii)

Since the required plane is perpendicular to the given plane x – 2y + 4z = 10

Then 1.a – 2.b + 4.c = 10  ......(iii)

Solving (ii) and (iii) we get,

`"a"/(8 + 10) = (-"b")/(-12 - 5) = "c"/(6 - 2) = lambda`

 a = 18λ, b = 17λ, c = 4λ

Hence, the required plane is

18λ(x – 2) + 17λ(y – 1) + 4λ(z + 1) = 0

⇒ 18x – 36 + 17y – 17 + 4z + 4 = 0

⇒ 18x + 17y + 4z – 49 = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Exercise [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Exercise | Q 20 | पृष्ठ २३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (−2, 2, −1)


Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2+ 3z = 5 and 3x + 3z = 0.


Find the Cartesian form of the equation of a plane whose vector equation is 

  \[\vec{r} \cdot \left( - \hat{i} + \hat{j}  + 2 \hat{k} \right) = 9\]

 


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\]  to the plane \[2x - 2y + 4z + 5 = 0\] .

 

Write the general equation of a plane parallel to X-axis.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The locus represented by xy + yz = 0 is ______.


Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is, 


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×