मराठी

Find the Vector Equation of the Plane with Intercepts 3, –4 and 2 on X, Y and Z-axis Respectively. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 

बेरीज

उत्तर १

It is given that O is the origin and the coordinates of A are (abc).

The direction ratios of OA are proportional to 

\[a - 0, b - 0, c - 0\]

∴ Direction cosines of OA are

\[\frac{a}{\sqrt{a^2 + b^2 + c^2}}, \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \frac{c}{\sqrt{a^2 + b^2 + c^2}}\]

The normal vector to the required plane is

`  a  \hat{i }+ b  \hat{j } + c\hat{k } `

The vector equation of the plane through A (abc) and perpendicular to OA is

`  \vec{r} - ( a  \hat{i }+ b   \hat{j }+ c\hat{k}) ] . ( a   \hat{i } + b   \hat{j }+ c\hat{k}) = 0 ( \vec{r} - \vec{a} ) . \vec{n} = 0  `

`   \vec{r} . ( a  \hat{i } + b  \hat{j } + c \hat{k }) = ( a  \hat{i }+ b  \hat{j } + c\hat{k}) . ( a   \hat{i } + b  \hat{j }+ c\hat{k} ) `

`  \vec{r} . ( a  \hat{x } + b  \hat{y }+ c   \hat{z }) = a^2 + b^2 + c^2  `

The Cartesian equation of this plane is

` ( x \hat{i }  + y  \hat{ j } + z   \hat{k }) . ( a   \hat{i }+ b  \hat{j }+ c\hat{k }) = a^2 + b^2 + c^2  `

`  \text{ Or  }ax + by + cz = a^2 + b^2 + c^2 `

shaalaa.com

उत्तर २

It is given that O is the origin and the coordinates of A are (abc).

The direction ratios of OA are proportional to 

\[a - 0, b - 0, c - 0\]

∴ Direction cosines of OA are

\[\frac{a}{\sqrt{a^2 + b^2 + c^2}}, \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \frac{c}{\sqrt{a^2 + b^2 + c^2}}\]

The normal vector to the required plane is

`  a  \hat{i }+ b  \hat{j } + c\hat{k } `

The vector equation of the plane through A (abc) and perpendicular to OA is

`  \vec{r} - ( a  \hat{i }+ b   \hat{j }+ c\hat{k}) ] . ( a   \hat{i } + b   \hat{j }+ c\hat{k}) = 0 ( \vec{r} - \vec{a} ) . \vec{n} = 0  `

`   \vec{r} . ( a  \hat{i } + b  \hat{j } + c \hat{k }) = ( a  \hat{i }+ b  \hat{j } + c\hat{k}) . ( a   \hat{i } + b  \hat{j }+ c\hat{k} ) `

`  \vec{r} . ( a  \hat{x } + b  \hat{y }+ c   \hat{z }) = a^2 + b^2 + c^2  `

The Cartesian equation of this plane is

` ( x \hat{i }  + y  \hat{ j } + z   \hat{k }) . ( a   \hat{i }+ b  \hat{j }+ c\hat{k }) = a^2 + b^2 + c^2  `

`  \text{ Or  }ax + by + cz = a^2 + b^2 + c^2 `

shaalaa.com

उत्तर ३

The equation of the plane in the intercept form is 

\[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\]  where ab and are the intercepts on the xy and z-axis, respectively.
It is given that the intercepts made by the plane on the xy and z-axis are 3, –4 and 2, respectively.
∴ = 3, = −4, c = 2
Thus, the equation of the plane is 

\[\frac{x}{3} + \frac{y}{\left( - 4 \right)} + \frac{z}{2} = 1\]

\[ \Rightarrow 4x - 3y + 6z = 12\]

`  Rightarrow ( x   \hat{i }+ y  \hat{ j } + z\hat{k  }) . ( 4   \hat{i } - 3   \hat{j  } + 6 \hat  {k } ) = 12 `

` Rightarrow \vec{r} . ( 4   \hat{i  } - 3  \hat{j  } + 6\hat{ k  } \right) = 12 `

This is the vector form of the equation of the given plane.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.03 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.03 | Q 20 | पृष्ठ १४
आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.03 | Q 21 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (−2, 2, −1)


Find the vector equation of each one of following planes. 

x + y − z = 5

 


A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]

 


Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.

 

Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.

 

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the   yz - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the distance of the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.

  

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×