मराठी

Find-vector-equation-plane-passing-through-point-a-b-c-parallel-plane-r-i-j-k-2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

उत्तर

The required plane passes through \[a \hat{i} + b \hat{j} + c \hat{k} \] and is parallel to the plane  \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\] So, it is normal to the vector  \[\hat{i}  + \hat{j} + \hat{k} \] which is normal to the given plane.
Hence, the vector equation of the required plane is

\[\left[ \vec{r} - \left( a \hat{i} + b \hat{j} + c \hat{k} \right) \right] . \left( \hat{i} + \hat{j} + \hat{k}  \right) = 0 \left[ \left( \vec{r} - \vec{a} \right) . \vec{n} = 0 \right]\]
\[ \Rightarrow \vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k} \right) = \left( a \hat{i} + b \hat{j} + c \hat{k}  \right) . \left( \hat{i}  + \hat{j}  + \hat{k}  \right)\]
\[ \Rightarrow \vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = a + b + c\]
Thus, the vector equation of the required plane is
\[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k}  \right) = a + b + c\]
  
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Very Short Answers [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Very Short Answers | Q 21 | पृष्ठ ८४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the Cartesian form of the equation of a plane whose vector equation is 

  \[\vec{r} \cdot \left( - \hat{i} + \hat{j}  + 2 \hat{k} \right) = 9\]

 


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

x + y = 3

 

A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane


Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]

 


Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


If the lines  \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of and, hence, find the equation of the plane containing these lines.


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×