मराठी

Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line vec("r")=(-2hat"i"+3hat"j")+lambda(2hat"i"-3hat"j"+6hat"k"). Also, find the distance - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.

बेरीज

उत्तर

It is given that line passes through the point (2,3,2) and is parallel to the line
`vec("r")=(2hat"i"+3hat"j")+ lambda (2hat"i"-3hat"j" +6hat"k").`

i.e. required line is parallel to the vector `2hat"i" -3hat"j" +6hat"k".`

Equation of the required line is `vec("r")= (2hat"i" + 3hat "j"+2hat"k")  +lambda(2hat"i"-3hat"j"+6hat"k")`

The two lines are parallel, we have

`vec("a"_1)=2hat"i"+3hat"j",vec("a"_2)=2hat"i"+3hat"j"+2hat"k"`and`vec("b")=2hat"i"-3hat"j"+6hat"k"`

Therefore, the distance between the lines is given by

`"d"=|(vec("b")xx(vec("a"_2)-vec("a"_1)))/|vec("b")||= ||(hat"i",hat"j",hat"k"),(2,-3,6),(4,0,2)|/sqrt(4+9+36)|`

`=|(-6hat"i"+20hat"j"+12hat"k")/sqrt49|=sqrt580/sqrt49=(2sqrt145)/7`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/4/3

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


What are the direction cosines of Y-axis?


What are the direction cosines of Z-axis?


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


If the directions cosines of a line are k,k,k, then ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×