Advertisements
Advertisements
प्रश्न
If a line has direction ratios 2, −1, −2, determine its direction cosines.
उत्तर
\[\text{Let the direction cosines of the line be l, m, n .} \]
\[\text{ Now,} \]
\[ l = \frac{2}{\sqrt{2^2 + \left( - 1 \right)^2 + \left( - 2 \right)^2}} = \frac{2}{3}\]\[m = \frac{- 1}{\sqrt{2^2 + \left( - 1 \right)^2 + \left( - 2 \right)^2}} = \frac{- 1}{3}\]\[n = \frac{- 2}{\sqrt{2^2 + \left( - 1 \right)^2 + \left( - 2 \right)^2}} = \frac{- 2}{3}\]\[\text{Therefore, the direction cosines of the line are }\frac{2}{3} , \frac{- 1}{3}, \frac{- 2}{3} .\]
APPEARS IN
संबंधित प्रश्न
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
What are the direction cosines of Z-axis?
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Find the distance of the point (2, 3, 4) from the x-axis.
Write direction cosines of a line parallel to z-axis.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
For every point P (x, y, z) on the xy-plane,
For every point P (x, y, z) on the x-axis (except the origin),
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
The angle between the two diagonals of a cube is
Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.