मराठी

If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line. - Mathematics

Advertisements
Advertisements

प्रश्न

If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.

बेरीज

उत्तर

The direction cosines are given by

l = `"a"/sqrt("a"^2 + "b"^2 + "c"^2)`

m = `"b"/sqrt("a"^2 + "b"^2 + "c"^2)`

n = `"c"/sqrt("a"^2 + "b"^2 + "c"62)`

Here a, b, c are 1, 1, 2, respectively

Therefore, l = `1/sqrt(1^2 + 1^2 + 2^2)`

m = `1/sqrt(1^2 + 1^2 + 2^2)`

n = `"c"/sqrt(1^2 + 1^2 + 2^2)`

i.e., l = `1/sqrt(6)`

m = `1/sqrt(6)`

n = `2/sqrt(6)`

i.e. `+-(1/sqrt(6), 1/sqrt(6), 2/sqrt(6))` are D.C’s of the line.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Solved Examples [पृष्ठ २२४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Solved Examples | Q 1 | पृष्ठ २२४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write direction cosines of a line parallel to z-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


The distance of the point P (abc) from the x-axis is 


The angle between the two diagonals of a cube is


 

 


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×