मराठी

Find the Acute Angle Between the Lines Whose Direction Ratios Are Proportional to 2 : 3 : 6 and 1 : 2 : 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.

बेरीज

उत्तर

\[\text { Let }  \vec{a} \text{ be a vector parallel to the vector with direction ratios } 2, 3, 6 . \]

\[ \Rightarrow \vec{a} = 2 \hat{i} + 3 \hat{j}+ 6 \hat{k} . \]

\[\text{ Let }  \vec{b}  \text { be a vector parallel to the vector with direction ratios }1, 2, 2 . \]

\[ \Rightarrow \vec{b} = \hat{i} + 2 \hat{j} + 2 \hat{k} \]

\[\text { Let } \theta  \text{ be the angle between the the given vectors }. \]

\[\text{ Now, }\]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} \]

\[ = \frac{\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k}  \right) . \left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right)}{\left| 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right|\left| \hat{i} + 2 \hat{j} + 2 \hat{k} \right|}\]

\[ = \frac{2 + 6 + 12}{\sqrt{4 + 9 + 36} \sqrt{1 + 4 + 4}}\]

\[ = \frac{20}{21} \]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{20}{21} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 8 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


Write direction cosines of a line parallel to z-axis.


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×