मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians - Mathematics

Advertisements
Advertisements

प्रश्न

A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians

बेरीज

उत्तर


`vec"OA" = hat"i", vec"OB" = hat"j", vec"OC" = hat"k"`

D is the midpoit of BC

∴ `vec"OD" = (vec"OB" + "OC")/2`

= `(hat"j" + hat"k")/2`

E is the midpoint of AC

`vec"OE" = (hat"i" + hat"k")/2`

F is the midpoint of AB

∴ `vec"OF" = (hat"i" + hat"j")/2`

Now the medians are `vec"AD", vec"BE"` and `vec"CF"`

(i) `vec"AD" =vec"OD" - vec"OA" = (hat"j" +hat"k")/2 - hat"i"`

= `-hat"i" + hat"j"/2 + hat"k"/2`

`|vec"AD"| = sqrt(1 + 1/4 + 1/4)`

= `sqrt(1 + 1/2)`

= `sqrt(3)/sqrt(2)`

and d.c's of `vec"AD" = ((-1)/(sqrt(3)/sqrt(2)), (1/2)/(sqrt(3)/sqrt(2)), (1/2)/(sqrt(3)/sqrt(2)))`

= `(- sqrt(2)/sqrt(3), sqrt(2)/(2sqrt(3)), sqrt(2)/(2sqrt(3)))`

= `(- sqrt(2)/sqrt(3), 1/(sqrt(2)sqrt(3)), 1/(sqrt(2)/sqrt(3)))`

= `(- sqrt(2)/sqrt(3), 1/sqrt(6), 1/sqrt(6))`

`["Now" sqrt(2)/sqrt(3) = sqrt(2)/sqrt(3) xx sqrt(2)/sqrt(2) = 2/sqrt(6)] = (- 2/sqrt(6), 1/sqrt(6), 1/sqrt(6))`

(ii) `vec"BE" = vec"OE" - vec"OB"`

= `(hat"i" + hat"k")/2 -hat"j"`

= `hat"i"/2 - hat"j" + hat"k"/2`

`|vec"BE"| = sqrt(1/4 + 1 + 1/4)`

= `sqrt(3)/sqrt(2)`

d.c's of `vec"BE" = ((1/2)/(sqrt(3)/sqrt(2)), (-1)/(sqrt(3)/sqrt(2)), (1/2)/(sqrt(3)/sqrt(2))) = (1/sqrt(6), (-2)/sqrt(6), 1/sqrt(6))`

(iii) `vec"CE" = vec"OF" - vec"OC"`

= `(hat"i" + hat"j")/2 - hat"k"`

= `hat"i"/2 + hat"j"/2 - hat"k"`

`|vec"CF"| = sqrt(1/4 + 1/4 + 1)`

= `sqrt(3)/sqrt(2)`

d.c's of `vec"CF" = ((1/2)/(sqrt(3)/sqrt(2)), (1/2)/(sqrt(3)/sqrt(2)), (-1)/(sqrt(3)/sqrt(2)))`

= `(1/sqrt(6), 1/sqrt(6), (-2)/sqrt(6))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Vector Algebra - Exercise 8.2 [पृष्ठ ६८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Vector Algebra
Exercise 8.2 | Q 4 | पृष्ठ ६८

संबंधित प्रश्‍न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Find the direction cosines of a line which makes equal angles with the coordinate axes.


Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).


Write the distance of the point (3, −5, 12) from X-axis?


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


Find the direction cosine of a line which makes equal angle with coordinate axes.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×