मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

If a12,12,a are the direction cosines of some vector, then find a - Mathematics

Advertisements
Advertisements

प्रश्न

If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a

बेरीज

उत्तर

Given `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then

`(1/2)^2 + (1/sqrt(2))^2 + "a"^2` = 1

`1/4 + 1/2 + "a"^2` = 1

`(1 + 2)/4 + "a"^2` = 1

a2 = `1 - 3/4`

= `(4 - 3)/4`

= `1/4`

a = `+-  1/2`

If l, m, n are direction cosines of a vector then l2 + m2 + n2 = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Vector Algebra - Exercise 8.2 [पृष्ठ ६८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Vector Algebra
Exercise 8.2 | Q 5 | पृष्ठ ६८

संबंधित प्रश्‍न

If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


The distance of the point P (abc) from the x-axis is 


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines and direction ratios for the following vector

`hat"j"`


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×