Advertisements
Advertisements
प्रश्न
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
उत्तर
Given `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then
`(1/2)^2 + (1/sqrt(2))^2 + "a"^2` = 1
`1/4 + 1/2 + "a"^2` = 1
`(1 + 2)/4 + "a"^2` = 1
a2 = `1 - 3/4`
= `(4 - 3)/4`
= `1/4`
a = `+- 1/2`
If l, m, n are direction cosines of a vector then l2 + m2 + n2 = 1
APPEARS IN
संबंधित प्रश्न
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
The distance of the point P (a, b, c) from the x-axis is
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Verify whether the following ratios are direction cosines of some vector or not
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines and direction ratios for the following vector
`hat"j"`
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.