Advertisements
Advertisements
प्रश्न
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
उत्तर
`vec"a", vec"b", vec"c" = (2hat"i" + 3hat"j" - 4hat"k") + (3hat"i" - 4hat"j" - 5hat"k") + (-3hat"i" + 2hat"j" + 3hat"k")`
`vec"a", vec"b", vec"c" = 2hat"i" + hat"j" - 6hat"k"`
`|vec"a", vec"b", vec"c"| = |2hat"i" + hat"j" - 6hat"k"|`
= `sqrt(2^2 + 1^2 + (-6)^2`
= `sqrt(4 + 1 + 36)`
= `sqrt(41)`
Direction cosnes of `2hat"i" + hat"j" - 6hat"k"` are
`[2/|2hat"i" + hat"j" - 6hat"k"|, 1/|2hat"i" + hat"j" - 6hat"k"|, (-6)/|2hat"i" + hat"j"- 6hat"k"|]`
`[2/sqrt(41), 1/sqrt(41), (6)/sqrt(41)]`
∴ he magnitde and direction cosines of the vector.
`vec"a" + vec"b" + vec"c"` are `sqrt(41), [2/sqrt(41), 1/sqrt(41), (6)/sqrt(41)]`
APPEARS IN
संबंधित प्रश्न
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Find the angle between the lines whose direction cosines are given by the equations
(i) l + m + n = 0 and l2 + m2 − n2 = 0
What are the direction cosines of Z-axis?
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
For every point P (x, y, z) on the xy-plane,
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Find the direction cosines and direction ratios for the following vector
`3hat"i" + hat"j" + hat"k"`
Find the direction cosines and direction ratios for the following vector
`hat"j"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.