Advertisements
Advertisements
प्रश्न
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
पर्याय
7
`sqrt(38)`
`sqrt(155)`
none of these
उत्तर
7
\[\text{ The given points } \left( 2, 3, 5 \right) \text{ and } \left( 5, 9, 7 \right) \text{ are two diagonally opposite vertices of the parallelopiped as all of their coordinates are different }. \]
\[ \therefore \text{ Edges of the parallelopiped } = \left| 2 - 5 \right|, \left| 3 - 9 \right| \text{ and } \left| 5 - 7 \right| \]
\[ = 3, 6 \text{ and } 2\]
\[\text { Now} , \]
\[\text{ Length of the diagonal of the parallelopiped } = \sqrt{\left( 3 \right)^2 + \left( 6 \right)^2 + \left( 2 \right)^2}\]
\[ \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} = \sqrt{9 + 36 + 4}\]
\[ \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} = \sqrt{49} \]
\[ \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} = 7\]
\[\text{ Hence, length of the diagonal of the parallelopiped formed by the planes parallel to coordinate planes and drawn through points } \left( 2, 3, 5 \right) \text { and } \left( 5, 9, 7 \right) \text{ is 7 units } . \]
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Write the direction ratios of the following line :
`x = −3, (y−4)/3 =( 2 −z)/1`
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Find the angle between the lines whose direction cosines are given by the equations
2l − m + 2n = 0 and mn + nl + lm = 0
Define direction cosines of a directed line.
What are the direction cosines of X-axis?
What are the direction cosines of Z-axis?
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Write direction cosines of a line parallel to z-axis.
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Find the direction cosines of a vector whose direction ratios are
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
If the directions cosines of a line are k,k,k, then ______.
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.