Advertisements
Advertisements
प्रश्न
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
उत्तर
The direction ratios of the `3hat"i" - 4hat"j" + 8hat"k"` are (3, – 4, 8)
The direction cosines of the vector `3hat"i" - 4hat"j" + 8hat"k"` are
`3/sqrt(3^2 + (-4)^2 + 8^2),(-4)/sqrt(3^2 + (-4)^2 + 8^2), 8/sqrt(3^2 + (-4)^2 + 8^2)`
`3/sqrt(9 + 16 + 64), (-4)/sqrt(9 + 16 + 64), 8/sqrt(9 + 16 + 64)`
`(3/sqrt(89), (-4)/sqrt(89), 8/sqrt(89))`
Direction ratios = (3, – 4, 8)
Direction cosines = `(3/sqrt(89), (-4)/sqrt(89), 8/sqrt(89))`
APPEARS IN
संबंधित प्रश्न
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
Write the direction ratios of the following line :
`x = −3, (y−4)/3 =( 2 −z)/1`
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
Define direction cosines of a directed line.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.
Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.