Advertisements
Advertisements
Question
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Solution
The direction ratios of the `3hat"i" - 4hat"j" + 8hat"k"` are (3, – 4, 8)
The direction cosines of the vector `3hat"i" - 4hat"j" + 8hat"k"` are
`3/sqrt(3^2 + (-4)^2 + 8^2),(-4)/sqrt(3^2 + (-4)^2 + 8^2), 8/sqrt(3^2 + (-4)^2 + 8^2)`
`3/sqrt(9 + 16 + 64), (-4)/sqrt(9 + 16 + 64), 8/sqrt(9 + 16 + 64)`
`(3/sqrt(89), (-4)/sqrt(89), 8/sqrt(89))`
Direction ratios = (3, – 4, 8)
Direction cosines = `(3/sqrt(89), (-4)/sqrt(89), 8/sqrt(89))`
APPEARS IN
RELATED QUESTIONS
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
If a unit vector `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with } \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.
For every point P (x, y, z) on the x-axis (except the origin),
The angle between the two diagonals of a cube is
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.