English

If the lines andx-1-3=y-22k=z-32andx-13k=y-11=z-6-5 are perpendicular, find the value of k. - Mathematics

Advertisements
Advertisements

Question

If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.

Sum

Solution 1

The direction ratios of the given lines are – 3, 2k, 2 and 3k, 1, −5.

∵ If the lines are perpendicular then a1a2 + b1b2 + c1c2 = 0

∴ – 3.3k + 2k.1 + 2.( –5) = 0

⇒ 9k + 2k – 10 = 0

⇒ −7k = 10

k = `(-10)/7`

shaalaa.com

Solution 2

The given lines are,

`(x - 1)/-3 = (y - 2)/(2k) = (z - 3)/2`                 ....(i)

and `(x - 1)/(3k) = (y - 1)/1 = (z - 6)/-5`          ....(ii)

The direction ratio of the line (i) are < - 3, 2k, 2 >

The direction ratio of the line (ii) are < 3k, 1, -5 >

if -9k + 2k - 10 = 0 if 7k = -10 if `k = -10/7`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise 11.4 [Page 498]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise 11.4 | Q 6 | Page 498

RELATED QUESTIONS

If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


Define direction cosines of a directed line.


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


For every point P (xyz) on the xy-plane,

 


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


The distance of the point P (abc) from the x-axis is 


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


Find the direction cosine of a line which makes equal angle with coordinate axes.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×