English

A Parallelopiped is Formed by Planes Drawn Through the Points (2, 3, 5) and (5, 9, 7), Parallel to the Coordinate Planes. the Length of Diagonal of the Parallelopiped is (A) 7 `Sqrt(38)` `Sqrt(155)` - Mathematics

Advertisements
Advertisements

Question

A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is

Options

  • 7

  • `sqrt(38)`

  • `sqrt(155)`

  • none of these

MCQ

Solution

7  

\[\text{ The given points } \left( 2, 3, 5 \right) \text{ and } \left( 5, 9, 7 \right) \text{ are two diagonally opposite vertices of the parallelopiped as all of their coordinates are different }. \]

\[ \therefore \text{ Edges of the parallelopiped } = \left| 2 - 5 \right|, \left| 3 - 9 \right| \text{ and } \left| 5 - 7 \right| \]

\[ = 3, 6 \text{ and } 2\]

\[\text { Now} , \]

\[\text{ Length of the diagonal of the parallelopiped } = \sqrt{\left( 3 \right)^2 + \left( 6 \right)^2 + \left( 2 \right)^2}\]

\[ \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} = \sqrt{9 + 36 + 4}\]

\[ \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} = \sqrt{49} \]

\[ \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} = 7\]

\[\text{ Hence, length of the diagonal of the parallelopiped formed by the planes parallel to coordinate planes and drawn through points }  \left( 2, 3, 5 \right) \text { and }  \left( 5, 9, 7 \right) \text{ is 7 units } . \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - MCQ [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
MCQ | Q 4 | Page 25

RELATED QUESTIONS

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


What are the direction cosines of Y-axis?


What are the direction cosines of Z-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


For every point P (xyz) on the x-axis (except the origin),


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×