Advertisements
Advertisements
Question
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
Solution
The direction cosines of a line passing through the points P(x1, y1, z1) and Q(x2, y2, z2) are
`(x_2 - x_1)/"PQ"`
`(y_2 - y_1)/"PQ"`
`(z_2 - z_1)/"PQ"`
Here PQ = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2`
= `sqrt((-1 - 2)^2 + (2 - 3)^2 + (4 - 5)^2`
= `sqrt(9 + 1 + 1)`
= `sqrt(11)`
Hence D.C.’s are `+-((-3)/sqrt(11), (-1)/sqrt(11), (-1)/sqrt(11))` or `+- (3/sqrt(11), 1/sqrt(11), 1/sqrt(11))`.
APPEARS IN
RELATED QUESTIONS
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Find the direction cosines of the line
`(x+2)/2=(2y-5)/3; z=-1`
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
What are the direction cosines of Y-axis?
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Write the distance of the point P (x, y, z) from XOY plane.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
Find the direction cosine of a line which makes equal angle with coordinate axes.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.