English

If O is the Origin, Op = 3 with Direction Ratios Proportional to −1, 2, −2 Then the Coordinates of P Are (A) (−1, 2, −2) (B) (1, 2, 2) (C) (−1/9, 2/9, −2/9) (D) (3, 6, −9) - Mathematics

Advertisements
Advertisements

Question

If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are

Options

  •  (−1, 2, −2)

  •  (1, 2, 2)

  •  (−1/9, 2/9, −2/9)

  •  (3, 6, −9)

MCQ

Solution

(1, 2,2)

Let the coordinates of P be (x, y, z). Then,

Direction ratios of OP= Coordinates of P Coordinates of O

1, 2, 2 = (x0), (y0), (z0)

Thus, coordinates of P are (1, 2,2).

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - MCQ [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
MCQ | Q 11 | Page 26

RELATED QUESTIONS

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of Z-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the distance of the point (3, −5, 12) from X-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


Write direction cosines of a line parallel to z-axis.


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×