English

If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) Are Collinear, Then R Divides Pq in the Ratio (A) 3 : 2 Internally (B) 3 : 2 Externally (C) 2 : 1 Internally (D) 2 : 1 Externally - Mathematics

Advertisements
Advertisements

Question

If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio

Options

  • 3 : 2 externally

  •  3 : 2 internally

  •  2 : 1 internally

  •  2 : 1 externally

     

MCQ

Solution

3: 2 externally

\[\text{ Suppose the point R divides PQ in the ratio } \lambda: 1 . \]

\[\text{ Coordinates of R are }  \left( \frac{5\lambda + 3}{\lambda + 1}, \frac{4\lambda + 2}{\lambda + 1}, \frac{- 6\lambda - 4}{\lambda + 1} \right) . \]

\[\text { But the coordinates of R are } \left( 9, 8, - 10 \right) . \]

\[ \therefore \frac{5\lambda + 3}{\lambda + 1} = 9, \frac{4\lambda + 2}{\lambda + 1} = 8 \text{ and } \frac{- 6\lambda - 4}{\lambda + 1} = - 10\]

\[\text{ From each of these equations, we get }\]

\[\lambda = - \frac{3}{2}\]

\[ \therefore \text{ R divides PQ in the ratio 3: 2 externally } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - MCQ [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
MCQ | Q 9 | Page 26

RELATED QUESTIONS

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


What are the direction cosines of Y-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write the distance of the point P (xyz) from XOY plane.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


Write direction cosines of a line parallel to z-axis.


For every point P (xyz) on the xy-plane,

 


For every point P (xyz) on the x-axis (except the origin),


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


If the directions cosines of a line are k,k,k, then ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×