हिंदी

If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) Are Collinear, Then R Divides Pq in the Ratio (A) 3 : 2 Internally (B) 3 : 2 Externally (C) 2 : 1 Internally (D) 2 : 1 Externally - Mathematics

Advertisements
Advertisements

प्रश्न

If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio

विकल्प

  • 3 : 2 externally

  •  3 : 2 internally

  •  2 : 1 internally

  •  2 : 1 externally

     

MCQ

उत्तर

3: 2 externally

\[\text{ Suppose the point R divides PQ in the ratio } \lambda: 1 . \]

\[\text{ Coordinates of R are }  \left( \frac{5\lambda + 3}{\lambda + 1}, \frac{4\lambda + 2}{\lambda + 1}, \frac{- 6\lambda - 4}{\lambda + 1} \right) . \]

\[\text { But the coordinates of R are } \left( 9, 8, - 10 \right) . \]

\[ \therefore \frac{5\lambda + 3}{\lambda + 1} = 9, \frac{4\lambda + 2}{\lambda + 1} = 8 \text{ and } \frac{- 6\lambda - 4}{\lambda + 1} = - 10\]

\[\text{ From each of these equations, we get }\]

\[\lambda = - \frac{3}{2}\]

\[ \therefore \text{ R divides PQ in the ratio 3: 2 externally } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - MCQ [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
MCQ | Q 9 | पृष्ठ २६

संबंधित प्रश्न

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


Write the distance of the point (3, −5, 12) from X-axis?


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Find the distance of the point (2, 3, 4) from the x-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


The distance of the point P (abc) from the x-axis is 


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


If the directions cosines of a line are k,k,k, then ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×