हिंदी

If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line. - Mathematics

Advertisements
Advertisements

प्रश्न

If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.

योग

उत्तर

Given, x = ay + b, z = cy + d

`\implies (x - b)/a` = y and `(z - d)/c` = y

`\implies (x - b)/a = y/1 = (z - d)/c`

∴ Direction ratios of given line is < a, 1, c >.

And a point on the given line is (b, 0, d).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Outside Delhi Set 2

संबंधित प्रश्न

Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


Define direction cosines of a directed line.


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×