Advertisements
Advertisements
प्रश्न
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
विकल्प
2
1
-1
-2
उत्तर
- 1
\[\text { Suppose the point P divides the line joining the point Q } \left( 2, 2, 1 \right) \text{ and } R \left( 5, 1, - 2 \right) \text{ in the ratio k: 1 } . \]
\[ \text{ Using the section formula, the coordinates of the point of intersection are given by } \]
\[\left( \frac{k\left( 5 \right) + 2}{k + 1}, \frac{k\left( 1 \right) + 2}{k + 1}, \frac{k\left( - 2 \right) + 1}{k + 1} \right)\]
\[\text { It is given that the X - coordinate of P is 4 } . \]
\[ \Rightarrow \frac{k\left( 5 \right) + 2}{k + 1} = 4\]
\[ \Rightarrow 5k + 2 = 4\left( k + 1 \right)\]
\[ \Rightarrow k = 2\]
\[\text{ Now } , \]
\[Z - \text{ coordinate of P } = \frac{k\left( - 2 \right) + 1}{k + 1}\]
\[ = \frac{2\left( - 2 \right) + 1}{2 + 1} \left [ \text{ Substituting k } = 2 \right]\]
\[ = - 1\]
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Write the direction ratios of the following line :
`x = −3, (y−4)/3 =( 2 −z)/1`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Find the angle between the lines whose direction cosines are given by the equations
2l − m + 2n = 0 and mn + nl + lm = 0
Define direction cosines of a directed line.
What are the direction cosines of X-axis?
What are the direction cosines of Z-axis?
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Write the distance of the point P (x, y, z) from XOY plane.
Find the distance of the point (2, 3, 4) from the x-axis.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
For every point P (x, y, z) on the xy-plane,
The distance of the point P (a, b, c) from the x-axis is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`3hat"i" + hat"j" + hat"k"`
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.