हिंदी

If a Line Makes Angles 90° and 60° Respectively with the Positive Directions of X and Y Axes, Find the Angle Which It Makes with the Positive Direction of Z-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.

योग

उत्तर

Let the direction cosines of the line be l, m and n.
We know that l2 + m2 + n2 = 1.
Let the line make angle θ with the positive direction of the z-axis.

\[\alpha = 90° \beta = 60°, \gamma = \theta\]

\[\text{ So } , \cos^2 90° + \cos^2 60° + \cos^2 \theta = 1\]

\[ \Rightarrow 0 + \left( \frac{1}{2} \right)^2 + \cos^2 \theta = 1\]

\[ \Rightarrow \cos^2 \theta = 1 - \frac{1}{4}\]

\[ \Rightarrow \cos^2 \theta = \frac{3}{4}\]

\[ \Rightarrow \cos\theta = \pm \frac{\sqrt{3}}{2}\]

\[ \Rightarrow \theta = 30° \text{ or } 150°\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - Very Short Answers [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
Very Short Answers | Q 21 | पृष्ठ २५

संबंधित प्रश्न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


For every point P (xyz) on the xy-plane,

 


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


The distance of the point P (abc) from the x-axis is 


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×