Advertisements
Advertisements
प्रश्न
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.
विकल्प
`(2x)/sqrt(3) = y/2 = z/0`
`(2x)/sqrt(3) = (2y)/1 = z/0`
2x = `(2y)/sqrt(3) = z/1`
`(2x)/sqrt(3) = (2y)/1 = z/1`
उत्तर
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is `underlinebb((2x)/sqrt(3) = (2y)/1 = z/0)`.
Explanation:
Here, direction cosines of the line are
l = cos 30°, m = cos 60°, n = cos 90°
l = `sqrt(3)/2`, m = `1/2`, n = 0
Here, line passes through the point (0, 0, 0).
So, the required equation of line is
`(x - 0)/(sqrt(3)/2) = (y - 0)/(1/2) = (z - 0)/0`
`\implies (2x)/sqrt(3) = (2y)/1 = z/0`
APPEARS IN
संबंधित प्रश्न
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
Find the direction cosines of a vector whose direction ratios are
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.