हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find the direction cosines and direction ratios for the following vector ikj3i^-3k^+4j^ - Mathematics

Advertisements
Advertisements

प्रश्न

Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`

योग

उत्तर

The direction ratio of the vector `3hat"i" - 3hat"k" + 4hat"j"` are (3, 4, – 3)

The direction cosines of the vector `3hat"i" - 3hat"k" + 4hat"j"` are

`3/sqrt(3^2 + 4^2 + (-3)^2), 4/sqrt(3^2 + 4^2 + (-3)^2), (-3)/sqrt(3^2 +4^2 + (-3)^2)`

`3/sqrt(9 + 16 + 9), 4/sqrt(9 + 16 + 9), (-3)/sqrt(9 + 16 + 9)` 

`(3/sqrt(34), 4/sqrt(34), (-3)/sqrt(34))`

Direction ratios = (3, 4, – 3)

Directio cosines = `(3/sqrt(34), 4/sqrt(34), (-3)/sqrt(34))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Vector Algebra - Exercise 8.2 [पृष्ठ ६८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 8 Vector Algebra
Exercise 8.2 | Q 3. (v) | पृष्ठ ६८

संबंधित प्रश्न

If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


The angle between the two diagonals of a cube is


 

 


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×