Advertisements
Advertisements
प्रश्न
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
उत्तर
Passing through point (2, 1, 3) .........given
(x, y, z) = (2, 1, 3)
Perpendicular to the lines.
`(x-1)/1 = (y-2)/2 =(z-3)/3` and `X/-3 = Y/2 = Z/5`
Let `veca = hati +2hatj + 3k`
`barb = -3hatj + 2hatj + 3k`
`baraxxhatb = |(hati hatj hatk),(1 2 3),(-3 2 5)|`
`=hati(10-6)-j(5+9)+hatk(2+6)`
`= 4hati - 14hatj + 8k`
D.r.’s of required line : 4, - 14,8
i.e, 2,-7,4
Required equation of line `(x-2)/2 = (y-1)/-7 = (z - 3)/4`
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line
`(x+2)/2=(2y-5)/3; z=-1`
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
What are the direction cosines of X-axis?
What are the direction cosines of Y-axis?
Write the distance of the point (3, −5, 12) from X-axis?
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.