हिंदी

If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.

विकल्प

  • sin α, sin β, sin γ

  • cos α, cos β, cos γ

  • tan α, tan β, tan γ

  • cos2α, cos2β, cos2γ

MCQ
रिक्त स्थान भरें

उत्तर

If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are cos α, cos β, cos γ.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Solved Examples [पृष्ठ २३२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Solved Examples | Q 16 | पृष्ठ २३२

संबंधित प्रश्न

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Define direction cosines of a directed line.


Find the distance of the point (2, 3, 4) from the x-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


For every point P (xyz) on the xy-plane,

 


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×