हिंदी

Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).

योग

उत्तर

Let A(3, 5,−4), B(−1, 1, 2) and C(−5, −5, −2).

Direction ratio of AB = (−1 − 3), (1 − 5), (2 − (−4))

= (−4, −4, 6)

|AB| = `sqrt((-4)^2 + (-4)^2 + (6)^2)`

= `sqrt(16 + 16 + 36)`

= `sqrt68`

= `2sqrt17`

Direction ratio of BC = (−5 − (−1), −5 − 1, −2 − 2)

= (−4, −6, −4)

|BC| = `sqrt((-4)^2 + (-6)^2 + (-4)^2)`

= `sqrt(16 + 36 + 16)`

= `sqrt68`

= `2sqrt17`

Direction ratio of CA = (−5 − 3, −5 − 5, −2 − (−4))

= (−8, −10, 2)

|CA| = `sqrt((-8)^2 + (-10)^2 + (2)^2)`

= `sqrt(64 + 100 + 4)`

= `sqrt168`

= `2sqrt42`

∴ AB are `< (-1 - 3)/|AB|, (1 - 5)/|AB|, (2 + 4)/|AB| >`

i.e., `< (-2)/sqrt17, (-2)/sqrt17, 3/sqrt17 >`

∴ d.c. of BC are `< (-5 + 1)/|BC|, (- 5 - 1)/|BC|, (- 2 -2)/|BC|>`

i.e., `< (-2)/sqrt17, (-3)/sqrt17, (-2)/sqrt17 >`

∴ d.c of CA are `< (3 + 5)/|CA|, (5 + 5)/|CA|, (- 4 + 2)/|CA|`

i.e., `< 4/sqrt42, 5/sqrt42, (-1)/sqrt42 >`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise 11.1 [पृष्ठ ४६७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise 11.1 | Q 5 | पृष्ठ ४६७

संबंधित प्रश्न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Find the distance of the point (2, 3, 4) from the x-axis.


For every point P (xyz) on the xy-plane,

 


For every point P (xyz) on the x-axis (except the origin),


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


If the directions cosines of a line are k,k,k, then ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×