हिंदी

For Every Point P (X, Y, Z) on the X-axis (Except the Origin), (A) X = 0, Y = 0, Z ≠ 0 (B) X = 0, Z = 0, Y ≠ 0 (C) Y = 0, Z = 0, X ≠ 0 (D) X = Y = Z = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

For every point P (xyz) on the x-axis (except the origin),

विकल्प

  •  x = 0, y = 0, z ≠ 0

  •  x = 0, z = 0, y ≠ 0

  • y = 0, z = 0, x ≠ 0

  • x = y = z = 0

MCQ

उत्तर

y=0, z = 0, x  0              

Both Y and Z coordinates on each point of the xaxis are equal to zero. The Xcoordinate on the origin is also equal to zero.Therefore, the Y and Z coordinates on each point of the xaxis, except the origin, are equal to zero, while the Xcoord

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - MCQ [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
MCQ | Q 2 | पृष्ठ २५

संबंधित प्रश्न

If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


What are the direction cosines of X-axis?


Write the distance of the point (3, −5, 12) from X-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


Write the distance of the point P (xyz) from XOY plane.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


For every point P (xyz) on the xy-plane,

 


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×