Advertisements
Advertisements
प्रश्न
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
उत्तर
Given, a = –18, b = 12, c = –4
∴ `sqrt(a^2 + b^2 + c^2)`
= `sqrt((-18)^2 + (12)^2 + (-4)^2)`
= `sqrt(324 + 144 + 16)`
= `sqrt484`
= 22
Let a, b, c be direction ratios, then direction cosine is given by,
∴ cos α = `a/sqrt(a^2 + b^2 + c^2)`
= `(-18)/22`
= `(-9)/11`
cos β = `b/sqrt(a^2 + b^2 + c^2)`
= `12/22`
= `6/11`
cos γ = `c/sqrt(a^2 + b^2 + c^2)`
= `(-4)/22`
= `(-2)/11`
Hence, the direction cosines of the line are `(-9)/11, 6/11` and `(-2)/11`.
संबंधित प्रश्न
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
What are the direction cosines of X-axis?
What are the direction cosines of Z-axis?
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.