हिंदी

If a line makes angles π2,34π and π4 with x, y, z axis, respectively, then its direction cosines are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.

रिक्त स्थान भरें

उत्तर

If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are `+- (0, - 1/sqrt(2) 1/sqrt(2))`.

Explanation:

The direction cosines are `cos  pi/2, cos  3/4 pi, cos  pi/4`

i.e., `+- (0, - 1/sqrt(2) 1/sqrt(2))`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Solved Examples [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Solved Examples | Q 20 | पृष्ठ २३३

संबंधित प्रश्न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Write the distance of the point P (xyz) from XOY plane.


Write direction cosines of a line parallel to z-axis.


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


The angle between the two diagonals of a cube is


 

 


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


If the directions cosines of a line are k,k,k, then ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×