Advertisements
Advertisements
प्रश्न
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
उत्तर
Any point on the given line is `(x - 3)/2 = (y - 3)/1 = z/1 = lambda`
⇒ x = 2λ + 3, y = λ + 3
And z = λ
Let it be the coordinates of P
∴ Direction ratios of OP are (2λ + 3 – 0), (λ + 3 – 0) and (λ – 0)
⇒ 2λ + 3, λ + 3, λ
But the direction ratios of the line PQ are 2, 1, 1
∴ `cos theta = ("a"_1"a"_2 + "b"_1"b"_2 + "c"_1"c"_2)/(sqrt("a"_1^2 + "b"_1^2 + "c"_1^2)*sqrt("a"_2^2 + "b"_2^2 + "c"_2^2)`
`cos pi/3 = (2(2lambda + 3) + 1(lambda + 3) + 1.lambda)/(sqrt((2)^2 + (1)^2 + (1)^2) * sqrt((2lambda + 3)^2 + (lambda + 3)^2 + lambda^2)`
⇒ `1/2 = (4lambda + 6 + lambda + 3 + lambda)/(sqrt(6) * sqrt(4lambda^2 + 9 + 12lambda + lambda^2 + 9 + 6lambda + lambda^2)`
⇒ `sqrt(6)/2 = (6lambda + 9)/sqrt(6lambda^2 + 18lambda + 18)`
= `(6lambda + 9)/(sqrt(6)sqrt(lambda^2 + 3lambda + 3)`
⇒ `6/2 = (3(2lambda + 3))/sqrt(lambda^2 + 3lambda + 3)`
⇒ 3 = `(3(2lambda + 3))/sqrt(lambda^2 + 3lambda + 3)`
⇒ 1 = `(2lambda + 3)/sqrt(lambda^2 + 3lambda + 3)`
⇒ `sqrt(lambda^2 + 3lambda + 3) = 2lambda + 3`
⇒ λ2 + 3λ+ 3 = 4λ2 + 9 + 12λ ......(Squaring both sides)
⇒ 3λ2 + 9λ + 6 = 0
⇒ λ2 + 3λ + 2 = 0
⇒ (λ + 1)(λ + 2) = 0
∴ λ = – 1, λ = – 2
∴ Direction ratios are [2(– 1) + 3, – 1 + 3, – 1]
i.e., 1, 2, – 1
When λ = – 1 and [2(– 2) + 3, – 2 + 3, – 2]
i.e., – 1, 1, – 2
When λ = – 2.
Hence, the required equations are
`x/1 = y/2 = z/(-1)` and `x/(-1) = y/1 = z/(-2)`.
APPEARS IN
संबंधित प्रश्न
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
Define direction cosines of a directed line.
What are the direction cosines of Y-axis?
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.
Write the distance of the point P (x, y, z) from XOY plane.
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
The angle between the two diagonals of a cube is
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.