हिंदी

Show that the Line Through Points (4, 7, 8) and (2, 3, 4) is Parallel to the Line Through the Points (−1, −2, 1) and (1, 2, 5). - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).

योग

उत्तर

\[\text { We know that the direction ratios of the line passing through the points } \left( x_1 , y_1 , z_1 \right) \text { and } \left( x_2 , y_2 , z_2 \right) \text { are } x_2 - x_1 , y_2 - y_1 , z_2 - z_1 . \]

\[\text{ Let the first two points be A } \left( 4, 7, 8 \right) \text{ and } B \left( 2, 3, 4 \right) . \]

\[\text{ Thus, the direction ratios of AB are } \left( 2 - 4 \right), \left( 3 - 7 \right), \left( 4 - 8 \right), \text{ i . e } . - 2, - 4, - 4 . \]

\[\text{ Similarly, let the other two points be C } \left( - 1, - 2, 1 \right) \text{ and } D\left( 1, 2, 5 \right) . \]

\[\text{ Thus, the direction ratios of CD are } \left[ 1 - \left( - 1 \right) \right], \left[ 2 - \left( - 2 \right) \right], \left( 5 - 1 \right),\text{ i . e} . 2, 4, 4 . \]

\[\text{ It can be seen that the direction ratios of CD are - 1 times that of AB, i . e . they are proportional }. \]

\[\text { Therefore, AB and CD are parallel lines } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 10 | पृष्ठ २३

संबंधित प्रश्न

Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


What are the direction cosines of X-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


For every point P (xyz) on the xy-plane,

 


For every point P (xyz) on the x-axis (except the origin),


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


The angle between the two diagonals of a cube is


 

 


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×