Advertisements
Advertisements
प्रश्न
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.
विकल्प
`x/1 = y/2 = z/3`
`x/1 = y/1 = z/1`
`(x - 1)/1 = (y - 1)/2 = (z - 1)/3`
`(x - 1)/1 = (y - 2)/1 = (z - 3)/1`
उत्तर
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is `underlinebb((x - 1)/1 = (y - 2)/1 = (z - 3)/1)`.
Explanation:
∵ Line is passing through (1, 2, 3) and equally inclined to coordinate axes.
`\implies` Direction ratios are (1, 1, 1).
So equation of line will be `(x - 1)/1 = (y - 2)/1 = (z - 3)/1`
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Find the direction cosines of the line
`(x+2)/2=(2y-5)/3; z=-1`
If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
What are the direction cosines of Z-axis?
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
For every point P (x, y, z) on the x-axis (except the origin),
The distance of the point P (a, b, c) from the x-axis is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
Verify whether the following ratios are direction cosines of some vector or not
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines of a vector whose direction ratios are
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.