हिंदी

The Distance of the Point P (A, B, C) from the X-axis is ,√ B 2 + C 2√ a 2 + C 2,√ a 2 + B 2,None of These. - Mathematics

Advertisements
Advertisements

प्रश्न

The distance of the point P (abc) from the x-axis is 

विकल्प

  • b2+c2

  • a2+c2

  • a2+b2

  • none of these

MCQ
योग

उत्तर

(a)b2+c2

 The projection of the point P (a,b,c) on the x - axis is (a,0,0) as both Y and Z coordinates on any point on the x - axis are equal to zero .

 Distance of P (a,b,c) from x - axis = Distance of P (a,b,c) from (a,0,0)

=(aa)2+(b0)2+(c0)2

=b2+c2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - MCQ [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
MCQ | Q 7 | पृष्ठ २५

संबंधित प्रश्न

Find the direction cosines of the line 

x+22=2y-53;z=-1


Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Which of the following represents direction cosines of the line :

(a)0,12,12

(b)0,-32,12

(c)0,32,12

(d)12,12,12


If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane r.(i^ +2j^-5k^)+9=0


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of Z-axis?


For every point P (xyz) on the x-axis (except the origin),


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


The angle between the two diagonals of a cube is


 

 


Verify whether the following ratios are direction cosines of some vector or not

15,35,45


Verify whether the following ratios are direction cosines of some vector or not

43,0,34


Find the direction cosines and direction ratios for the following vector

5i^-3j^-48k^


Find the direction cosines and direction ratios for the following vector

3i^-3k^+4j^


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The Cartesian equation of a line AB is: 2x-12=y+22=z-33. Find the direction cosines of a line parallel to line AB.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.