Advertisements
Advertisements
प्रश्न
The distance of the point P (a, b, c) from the x-axis is
विकल्प
none of these
उत्तर
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Which of the following represents direction cosines of the line :
(a)
(b)
(c)
(d)
If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
What are the direction cosines of Z-axis?
For every point P (x, y, z) on the x-axis (except the origin),
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
The angle between the two diagonals of a cube is
Verify whether the following ratios are direction cosines of some vector or not
Verify whether the following ratios are direction cosines of some vector or not
Find the direction cosines and direction ratios for the following vector
Find the direction cosines and direction ratios for the following vector
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
The Cartesian equation of a line AB is:
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.
If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.