Advertisements
Advertisements
प्रश्न
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
उत्तर
\[\text { The given points are } A \left( 1, 2, 3 \right), B\left( 4, 5, 7 \right), C\left( - 4, 3, - 6 \right) \text{ and } D \left( 2, 9, 2 \right) . \]
\[\text { We know that the direction ratios of the line joining the points } \left( x_1 , y_1 , z_1 \right) \text { and } \left( x_2 , y_2 , z_2 \right) \text { are } x_2 - x_1 , y_2 - y_1 , z_2 - z_1 . \]
\[\text { The direction ratios of AB are } \left( 4 - 1 \right), \left( 5 - 2 \right), \left( 7 - 3 \right), \text { i . e } . 3, 3, 4 . \]
\[\text { The direction ratios of CD are } \left[ 2 - \left( - 4 \right) \right], \left( 9 - 3 \right), \left[ 2 - \left( - 6 \right) \right], \text { i . e }. 6, 6, 8 . \]
\[\text { Let } \theta \text { be the angle between AB and CD } . \]
\[\text { We have } \]
\[ a_1 = 3, b_1 = 3, c_1 = 4 \]
\[ a_2 = 6, b_2 = 6, c_2 = 8\]
\[ \therefore \cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{{a_1}^2 + {b_1}^2 + {c_1}^2}\sqrt{{a_2}^2 + {b_2}^2 + {c_2}^2}} = \frac{18 + 18 + 32}{\sqrt{9 + 9 + 16}\sqrt{36 + 36 + 64}} = \frac{68}{68} = 1\]
\[ \Rightarrow \theta = 0° \]
\[\text { Thus, the angle between AB and CD measures } 0° . \]
APPEARS IN
संबंधित प्रश्न
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Find the angle between the lines whose direction cosines are given by the equations
(i) l + m + n = 0 and l2 + m2 − n2 = 0
What are the direction cosines of X-axis?
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
For every point P (x, y, z) on the xy-plane,
The distance of the point P (a, b, c) from the x-axis is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
The angle between the two diagonals of a cube is
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.
If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.