हिंदी

Using Direction Ratios Show that the Points a (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) Are Collinear. - Mathematics

Advertisements
Advertisements

प्रश्न

Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.

योग

उत्तर

\[\text{The given points are}  \text{ A }\left( 2, 3, - 4 \right), B\left( 1, - 2, 3 \right) \text{and}\ C \left( 3, 8, - 11 \right) . \]

\[\text{We know that the direction ratios of the line joining the points, } \left( x_1 , y_1 , z_1 \right) \text{and}\ \left( x_2 , y_2 , z_2 \right) \text{are } \ x_2 - x_1 , y_2 - y_1 , z_2 - z_1 . \]

\[\text{The direction ratios of the line joining A and B are } 1 - 2, - 2 - 3, 3 + 4,\text{ i . e }. - 1, - 5, 7 . \]

\[\text{The direction ratios of the line joining B and C are }  3 - 1, 8 + 2, - 11 - 3, \text{i . e }. 2, 10, - 14 . \]

\[\text {It is clear that the direction ratios of BC are  - 2 times that of AB, i . e . they are proportional . }\]

\[\text{Therefore, AB is parallel to BC . }\]

\[\text{Also, point B is common in both AB and BC . }\]

\[\text{Therefore, points A, B and C are collinear .}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 4 | पृष्ठ २३

संबंधित प्रश्न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the distance of the point (3, −5, 12) from X-axis?


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write the distance of the point P (xyz) from XOY plane.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


Write direction cosines of a line parallel to z-axis.


For every point P (xyz) on the x-axis (except the origin),


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×