हिंदी

Write the Ratio in Which the Line Segment Joining (A, B, C) and (−A, −C, −B) is Divided by the Xy-plane. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.

योग

उत्तर

\[ \text{ Suppose the line segment joining the points } \left( a, b, c \right) \text{ and } \left( - a, - c, - b \right) \text{ is divided by the XY - plane at a point R in the ratio } \lambda: 1 . \]

\[\text{ Coordinates of R are}  \]

\[\left( \frac{\lambda\left( - a \right) + 1\left( a \right)}{\lambda + 1}, \frac{\lambda\left( - c \right) + 1\left( b \right)}{\lambda + 1}, \frac{\lambda\left( - b \right) + 1\left( c \right)}{\lambda + 1} \right)\]

\[\text{ Since R lies on XY - plane, Z - coordinate of R must be zero } . \]

\[ \Rightarrow \frac{\lambda\left( - b \right) + 1\left( c \right)}{\lambda + 1} = 0 = \frac{c}{b} \]

\[\text{ Thus, the required ratio is } \frac{c} {b: 1} \  \text{or } {c: b} . \]

\[ \text{ Hence, the XY - plane divides the line in the ratio }  c: b .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - Very Short Answers [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
Very Short Answers | Q 10 | पृष्ठ २५

संबंधित प्रश्न

Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


For every point P (xyz) on the xy-plane,

 


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


The angle between the two diagonals of a cube is


 

 


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If the directions cosines of a line are k,k,k, then ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×