हिंदी

Show that the Points (2, 3, 4), (−1, −2, 1), (5, 8, 7) Are Collinear. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.

योग

उत्तर

\[\text{ Suppose the points are A } \left( 2, 3, 4 \right), B \left( - 1 . - 2, 1 \right) \text { and } C \left( 5, 8, 7 \right) . \]

\[\text { We know that the direction ratios of the line joining the points } \left( x_1 , y_1 , z_1 \right) \text{ and } \left( x_2 , y_2 , z_2 \right) \text{ are } x_2 - x_1 , y_2 - y_1 , z_2 - z_1 . \]

\[\text{ The direction ratios of AB are } \left( - 1 - 2 \right), \left( - 2 - 3 \right), \left( 1 - 4 \right), \text{ i . e }. - 3, - 5, - 3 . \]

\[\text{ The direction ratios of BC are } \left( 5 - \left( - 1 \right) \right), \left( 8 - \left( - 2 \right) \right), \left( 7 - 1 \right), \text { i . e } . 6, 10, 6 . \]

\[ \text{ It can be seen that the direction ratios of BC are - 2 times that of AB, i . e . they are proportional . Therefore, AB is parallel to BC }. \]

\[\text { Since point B is common in both AB and BC, points A, B, and C are collinear } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 9 | पृष्ठ २३

संबंधित प्रश्न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


What are the direction cosines of Z-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the distance of the point (3, −5, 12) from X-axis?


Write the distance of the point P (xyz) from XOY plane.


For every point P (xyz) on the xy-plane,

 


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


The angle between the two diagonals of a cube is


 

 


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


Find the direction cosine of a line which makes equal angle with coordinate axes.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×