Advertisements
Advertisements
प्रश्न
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
विकल्प
internally in the ratio 2 : 3
externally in the ratio 2 : 3
internally in the ratio 3 : 2
externally in the ratio 3 : 2
उत्तर
`\text{ externally in the ratio 2: 3 } `
\[\text{ Let the XY - plane divide the line segment joining points }P\left( - 1, 3, 4 \right) \text{ and } Q\left( 2, - 5, 6 \right) \text{ in the ratio k: 1 }. \]
\[\text { Using the section formula, the coordinates of the point of intersection are given by } \]
\[\left( \frac{k\left( 2 \right) - 1}{k + 1}, \frac{k\left( - 5 \right) + 3}{k + 1}, \frac{k\left( 6 \right) + 4}{k + 1} \right)\]
\[\text { On the XY - plane, the Z - coordinate of any point is zero } . \]
\[ \Rightarrow \frac{k\left( 6 \right) + 4}{k + 1} = 0\]
\[ \Rightarrow 6k + 4 = 0\]
\[ \Rightarrow k = - \frac{2}{3}\]
\[\text{ Thus, the XY - plane divides the line segment joining the given points in the ratio 2: 3 externally } . \]
APPEARS IN
संबंधित प्रश्न
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
Find the direction cosines of a line which makes equal angles with the coordinate axes.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the lines whose direction cosines are given by the equations
(i) l + m + n = 0 and l2 + m2 − n2 = 0
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
Write direction cosines of a line parallel to z-axis.
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.
If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.