Advertisements
Advertisements
प्रश्न
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
उत्तर
The direction ratios of the vector `5hat"i" - 3hat"j" - 48hat"k"` are (5, – 3, – 48)
The direction cosines of the vector `5hat"i" - 3hat"j" - 48hat"k"` are
`5/sqrt(5^2 + (-3)^2 + (-48)^2), (-3)/sqrt(5^2 + (-3)^2 + (-48)^2), (-48)/sqrt(5^2 + (-3)^2 + (-48)^2)`
`5/sqrt(25 + 9 + 2304), (-3)/sqrt(25 + 9 + 2304), (-48)/sqrt(25 + 9 + 2304)`
`(5/sqrt(2338), (-3)/sqrt(2338), (-4)/sqrt(2338))`
Direction ratios = (5, – 3, – 48)
Direction cosies = `(5/sqrt(2338), (-3)/sqrt(2338), (-4)/sqrt(2338))`
APPEARS IN
संबंधित प्रश्न
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Write the distance of the point P (x, y, z) from XOY plane.
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
The distance of the point P (a, b, c) from the x-axis is
The angle between the two diagonals of a cube is
Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.
Find the direction cosines of a vector whose direction ratios are
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.