Advertisements
Advertisements
Question
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
Solution
The direction ratios of the vector `5hat"i" - 3hat"j" - 48hat"k"` are (5, – 3, – 48)
The direction cosines of the vector `5hat"i" - 3hat"j" - 48hat"k"` are
`5/sqrt(5^2 + (-3)^2 + (-48)^2), (-3)/sqrt(5^2 + (-3)^2 + (-48)^2), (-48)/sqrt(5^2 + (-3)^2 + (-48)^2)`
`5/sqrt(25 + 9 + 2304), (-3)/sqrt(25 + 9 + 2304), (-48)/sqrt(25 + 9 + 2304)`
`(5/sqrt(2338), (-3)/sqrt(2338), (-4)/sqrt(2338))`
Direction ratios = (5, – 3, – 48)
Direction cosies = `(5/sqrt(2338), (-3)/sqrt(2338), (-4)/sqrt(2338))`
APPEARS IN
RELATED QUESTIONS
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
Write direction cosines of a line parallel to z-axis.
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
Find the direction cosine of a line which makes equal angle with coordinate axes.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.