Advertisements
Advertisements
Question
If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c
Solution
Let A be the point (1, 0, 0) and B be the point (0, 1, 0)
(i.e.,) `vec"OA" = hat"i"` and `vec"OB" = hat"j"`
Then `vec"AB" = vec"OB" - vec"OA"`
= `hat"j" - hat"i"`
= `-hat"i" + hat"j"`
= (– 1, 1, 0)
= (a, a + b, a + b + c)
⇒ a = – 1, a + b = 1 and a + b + c = 0
Now a = – 1
⇒ – 1 + b = 1
a + b + c = 0
⇒ b = 2
– 1 + 2 + c = 0
⇒ c + 1 = 0
⇒ c = – 1
∴ a = – 1, b = 2, c = – 1.
APPEARS IN
RELATED QUESTIONS
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the lines whose direction cosines are given by the equations
2l − m + 2n = 0 and mn + nl + lm = 0
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
What are the direction cosines of X-axis?
What are the direction cosines of Y-axis?
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the distance of the point P (x, y, z) from XOY plane.
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
The angle between the two diagonals of a cube is
Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
If the directions cosines of a line are k,k,k, then ______.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.
If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.