English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c - Mathematics

Advertisements
Advertisements

Question

If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c

Sum

Solution

Let A be the point (1, 0, 0) and B be the point (0, 1, 0)

(i.e.,) `vec"OA" = hat"i"` and `vec"OB" = hat"j"`

Then `vec"AB" = vec"OB" - vec"OA"`

= `hat"j" - hat"i"`

= `-hat"i" + hat"j"`

= (– 1, 1, 0)

= (a, a + b, a + b + c)

⇒ a = – 1, a + b = 1 and a + b + c = 0

Now a = – 1

⇒ – 1 + b = 1

a + b + c = 0

⇒ b = 2

– 1 + 2 + c = 0

⇒ c + 1 = 0

⇒ c = – 1

∴ a = – 1, b = 2, c = – 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Vector Algebra - Exercise 8.2 [Page 68]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 8 Vector Algebra
Exercise 8.2 | Q 6 | Page 68

RELATED QUESTIONS

If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


What are the direction cosines of Y-axis?


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the distance of the point P (xyz) from XOY plane.


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


The angle between the two diagonals of a cube is


 

 


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If the directions cosines of a line are k,k,k, then ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×