English

Find the Angle Between the Lines Whose Direction Cosines Are Given by the Equations 2l − M + 2n = 0 And Mn + Nl + Lm = 0 - Mathematics

Advertisements
Advertisements

Question

Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0

Sum

Solution

 

`\text{ Given } : `

\[2l - m + 2n = 0 . . . (1)\]

\[mn + nl + lm = 0 . . . (2)\]

\[\text{ From } \left( 1 \right), \text { we get } \]

\[m = 2l + 2n\]

\[\text { Substituting }m = 2l + 2n \text { in } \left( 2 \right), \text { we get }\]

\[\left( 2l + 2n \right)n + nl + l\left( 2l + 2n \right) = 0\]

\[ \Rightarrow 2\ln + 2 n^2 + nl + 2 l^2 + 2\ln = 0\]

\[ \Rightarrow 2 l^2 + 5ln + 2 n^2 = 0 \]

\[ \Rightarrow \left( l + 2n \right) \left( 2l + n \right) = 0\]

\[ \Rightarrow l = - 2n , - \frac{n}{2}\]

\[\text { If } l = - 2n, \text { then by substituting } l = - 2n \text { in } \left( 1 \right), \text { we get } m = - 2n . \]

\[\text { If } l = - \frac{n}{2}, \text { then by substituting } l = - \frac{n}{2} in \left( 1 \right), \text { we get } m = n . \]

\[\text{ Thus, the direction ratios of the two lines are proportional to } - 2n, - 2n, n \text { and }  - \frac{n}{2}, n, n or - 2, - 2, 1 \text{ and }- \frac{1}{2}, 1, 1 . \]

\[\text{ Vectors parallel these lines are }\]

\[ \vec{a} = - 2 \hat{i} - \hat{2j} + \hat{k} \]

\[ \vec{b} = - \frac{1}{2} \hat{i}     + \hat{j} + \hat{k} \]

\[\text{ If } \theta \text{ is the angle between the lines, then } \theta \text{ is also the angle between } \vec{a} \text { and } \vec{b .} \]

\[\text{ Now }, \]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|}\]

\[ = \frac{1 - 2 + 1}{\sqrt{4 + 4 + 1} \sqrt{ 1/4 + 1 + 1}} \]

\[ = 0 \]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - Exercise 27.1 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 16.2 | Page 23

RELATED QUESTIONS

Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


What are the direction cosines of Z-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


Write direction cosines of a line parallel to z-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


The distance of the point P (abc) from the x-axis is 


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×