मराठी

Find the Angle Between the Lines Whose Direction Cosines Are Given by the Equations 2l − M + 2n = 0 And Mn + Nl + Lm = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0

बेरीज

उत्तर

 

`\text{ Given } : `

\[2l - m + 2n = 0 . . . (1)\]

\[mn + nl + lm = 0 . . . (2)\]

\[\text{ From } \left( 1 \right), \text { we get } \]

\[m = 2l + 2n\]

\[\text { Substituting }m = 2l + 2n \text { in } \left( 2 \right), \text { we get }\]

\[\left( 2l + 2n \right)n + nl + l\left( 2l + 2n \right) = 0\]

\[ \Rightarrow 2\ln + 2 n^2 + nl + 2 l^2 + 2\ln = 0\]

\[ \Rightarrow 2 l^2 + 5ln + 2 n^2 = 0 \]

\[ \Rightarrow \left( l + 2n \right) \left( 2l + n \right) = 0\]

\[ \Rightarrow l = - 2n , - \frac{n}{2}\]

\[\text { If } l = - 2n, \text { then by substituting } l = - 2n \text { in } \left( 1 \right), \text { we get } m = - 2n . \]

\[\text { If } l = - \frac{n}{2}, \text { then by substituting } l = - \frac{n}{2} in \left( 1 \right), \text { we get } m = n . \]

\[\text{ Thus, the direction ratios of the two lines are proportional to } - 2n, - 2n, n \text { and }  - \frac{n}{2}, n, n or - 2, - 2, 1 \text{ and }- \frac{1}{2}, 1, 1 . \]

\[\text{ Vectors parallel these lines are }\]

\[ \vec{a} = - 2 \hat{i} - \hat{2j} + \hat{k} \]

\[ \vec{b} = - \frac{1}{2} \hat{i}     + \hat{j} + \hat{k} \]

\[\text{ If } \theta \text{ is the angle between the lines, then } \theta \text{ is also the angle between } \vec{a} \text { and } \vec{b .} \]

\[\text{ Now }, \]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|}\]

\[ = \frac{1 - 2 + 1}{\sqrt{4 + 4 + 1} \sqrt{ 1/4 + 1 + 1}} \]

\[ = 0 \]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 16.2 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Define direction cosines of a directed line.


What are the direction cosines of Y-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


For every point P (xyz) on the x-axis (except the origin),


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×