Advertisements
Advertisements
प्रश्न
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
पर्याय
\[\frac{1}{3}\]
\[\frac{2}{3}\]
\[\frac{4}{3}\]
\[\frac{8}{3}\]
उत्तर
\[\frac{4}{3}\]
\[\text { Let a be the length of an edge of the cube and let one corner be at the origin as shown in the figure . Clearly, OP, AR, BS and CQ are the diagonals of the cube } . \]
\[\text{ The direction ratios of OP, AR, BS and CQ are } \]
\[a - 0, a - 0, a - 0, \text{ i . e } . a, a, a\]
\[0 - a, a - 0, a - 0, \text{ i . e } . - a, a, a\]
\[a - 0, 0 - a, a - 0,\text{ i . e } . a, - a, a\]
\[a - 0, a - 0, 0 - a\text{ i . e } . a, a, - a \]
\[ \text { Let the direction ratios of a line be proportional to l, m and n . Suppose this line makes angles} \alpha, \beta, \gamma \text { and } \delta \text{ with OP, AR, BS and CQ, respectively i . e } . \]
\[\text{ Now} , \alpha \text{ is the angle between OP and the line whose direction ratios are proportional to l, m and n } . \]
\[ \cos \alpha = \frac{a . l + a . m + a . n}{\sqrt{a^2 + a^2 + a^2}\sqrt{l^2 + m^2 + n^2}} \Rightarrow \cos \alpha = \frac{l + m + n}{\sqrt{3}\sqrt{l^2 + m^2 + n^2}}\]
\[\text{ Since } \beta \text{ is the angle between AR and the line with direction ratios proportional to l, m and n, we get }\]
\[ \cos \beta = \frac{- a . l + a . m + a . n}{\sqrt{a^2 + a^2 + a^2}\sqrt{l^2 + m^2 + n^2}} \Rightarrow \cos \beta = \frac{- l + m + n}{\sqrt{3}\sqrt{l^2 + m^2 + n^2}}\]
\[\text{ Similarly }, \]
\[ \cos \gamma = \frac{a . l - a . m + a . n}{\sqrt{a^2 + a^2 + a^2}\sqrt{l^2 + m^2 + n^2}} \Rightarrow \cos \gamma = \frac{l - m + n}{\sqrt{3}\sqrt{l^2 + m^2 + n^2}}\]
\[ \cos \delta = \frac{a . l + a . m - a . n}{\sqrt{a^2 + a^2 + a^2}\sqrt{l^2 + m^2 + n^2}} \Rightarrow \cos \delta = \frac{l + m - n}{\sqrt{3}\sqrt{l^2 + m^2 + n^2}}\]
\[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta \]
\[ = \frac{\left( l + m + n \right)^2}{3\left( l^2 + m^2 + n^2 \right)} + \frac{\left( - l + m + n \right)^2}{3\left( l^2 + m^2 + n^2 \right)} + \frac{\left( I - m + n \right)^2}{3\left( l^2 + m^2 + n^2 \right)} + \frac{\left( l + m - n \right)^2}{\sqrt{3}\sqrt{l^2 + m^2 + n^2}}\]
\[ = \frac{1}{3\left( l^2 + m^2 + n^2 \right)}\left\{ \left( l + m + n \right)^2 + \left( - l + m + n \right)^2 + \left( I - m + n \right)^2 + \left( l + m - n \right)^2 \right\}\]
\[ = \frac{1}{3\left( l^2 + m^2 + n^2 \right)}4\left( l^2 + m^2 + n^2 \right) = \frac{4}{3}\]
APPEARS IN
संबंधित प्रश्न
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
What are the direction cosines of Z-axis?
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Find the distance of the point (2, 3, 4) from the x-axis.
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
Write direction cosines of a line parallel to z-axis.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
The distance of the point P (a, b, c) from the x-axis is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.