Advertisements
Advertisements
प्रश्न
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
उत्तर
\[ \text{ It is given that the the line makes angles } \alpha, \beta, \gamma \text{ with the coordinate axis }. \]
\[ \therefore l = \cos \alpha, m = \cos \beta \text{ and } n = \cos \gamma\]
\[ \Rightarrow l^2 + m^2 + n^2 = 1\]
\[ \Rightarrow \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 . . . \left( 1 \right)\]
\[\text{ Now} , \]
\[\cos^2\alpha + \cos^2\beta + \cos^2\gamma = \left( 2 \cos^2 \alpha - 1 \right) + \left( 2 \cos^2 \beta - 1 \right) + \left( 2 \cos^2 \gamma - 1 \right)\]
\[ = 2\left( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \right) - 3\]
\[ = 2\left( 1 \right) - 3 ............\left [ \text{ From }\left( 1\right) \right]\]
\[ = - 1\]
APPEARS IN
संबंधित प्रश्न
If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
What are the direction cosines of Y-axis?
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
For every point P (x, y, z) on the xy-plane,
For every point P (x, y, z) on the x-axis (except the origin),
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
Verify whether the following ratios are direction cosines of some vector or not
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`3hat"i" + hat"j" + hat"k"`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
Find the direction cosine of a line which makes equal angle with coordinate axes.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.