मराठी

Ratio in Which the Xy-plane Divides the Join of (1, 2, 3) and (4, 2, 1) is (A) 3 : 1 Internally (B) 3 : 1 Externally (C) 1 : 2 Internally (D) 2 : 1 Externally - Mathematics

Advertisements
Advertisements

प्रश्न

Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is

पर्याय

  •  3 : 1 internally

  • 3 : 1 externally

  •  1 : 2 internally

  • 2 : 1 externally

MCQ

उत्तर

` 3: 1 \text{ externally } `

\[\text{ Suppose the XY - plane divides the line segment joining the points P }  \left( 1, 2, 3 \right) \text{ and Q }  \left( 4, 2, 1 \right) \text{ in the ratio k: 1 } . \]

\[\text{ Using the section formula, the coordinates of the point of intersection are given by } \]

\[\left( \frac{k\left( 4 \right) + 1}{k + 1}, \frac{k\left( 2 \right) + 2}{k + 1}, \frac{k\left( 1 \right) + 3}{k + 1} \right)\]

\[\text{ The Z - coordinate of any point on the XY - plane is zero }. \]

\[ \Rightarrow \frac{k\left( 1 \right) + 3}{k + 1} = 0\]

\[ \Rightarrow k + 3 = 0\]

\[ \Rightarrow k = - 3 = - \frac{3}{1}\]

\[\text{ Thus, the XY - plane divides the line segment joining the given points in the ratio 3: 1 externally } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - MCQ [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
MCQ | Q 8 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


Write direction cosines of a line parallel to z-axis.


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


The distance of the point P (abc) from the x-axis is 


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


Find the direction cosine of a line which makes equal angle with coordinate axes.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×