Advertisements
Advertisements
प्रश्न
Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.
उत्तर
Let P(1, 6, 3) be the given point, and let 'L' be the foot of the perpendicular from 'P' to the given line AB (as shown in the figure below). The coordinates of a general point on the given line are given by
`(x - 0)/1 = (y - 1)/2 = (z - 2)/3` = λ; λ is a scalar, i.e., x = λ, y = 2λ + 1 and z = 3λ + 2
Let the coordinates of L be (λ, 2λ + 1, 3λ + 2).
So, direction ratios of PL are λ – 1, 2λ + 1 – 6 and 3λ + 2 – 3, i.e., λ – 1, 2λ – 5 and 3λ – 1.
Direction ratios of the given line are 1, 2 and 3, which is perpendicular to PL.
Therefore, (λ – 1)1 + (2λ – 5)2 + (3λ – 1)3 = 0
`\implies` 14λ – 14 = 0
`\implies` λ = 1
So, coordinates of L are (1, 3, 5).
Let Q(x1, y1, z1) be the image of P(1, 6, 3) in the given line.
Then, L is the mid-point of PQ.
Therefore, `((x_1 + 1))/2` = 1, `((y_1 + 6))/2` = 3 and `((z_1 + 3))/2` = 5
`\implies` x1 = 1, y1 = 0 and z1 = 7
Hence, the image of P(1, 6, 3) in the given line is (1, 0, 7).
Now, the distance of the point (1, 0, 7) from the y-axis is `sqrt(1^2 + 7^2) = sqrt(50)` units.
APPEARS IN
संबंधित प्रश्न
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Define direction cosines of a directed line.
What are the direction cosines of Z-axis?
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
For every point P (x, y, z) on the xy-plane,
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.
If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.