Advertisements
Advertisements
प्रश्न
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
उत्तर
The given direction ratios are a = 0, b = 0, c = 7
If a, b, c are the direction ratios of a vector then the direction cosines of the vector are
l = `"b"/sqrt("a"^2 + "b"^2 + "c"^2)`
m = `"b"/sqrt("a"^2 + "b"^2 + "c"^2)`
c = `"c"/sqrt("a"^2 + "b"^2 + "c"^2)`
∴ The required direction cosines of the water are
= `0/sqrt(0^2 + 0^2 + 7), 0/sqrt(0^2 + 0^2 + 7^2), 7/sqrt(0^2 + 0^2 + 7^2)`
= `0/7, 0/7, 7/7`
= (0, 0, 1)
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the angle between the lines whose direction cosines are given by the equations
(i) l + m + n = 0 and l2 + m2 − n2 = 0
Find the angle between the lines whose direction cosines are given by the equations
2l − m + 2n = 0 and mn + nl + lm = 0
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
What are the direction cosines of Y-axis?
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Verify whether the following ratios are direction cosines of some vector or not
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
If the directions cosines of a line are k,k,k, then ______.
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.